GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro
نویسندگان
چکیده
Nuclear envelope assembly was studied in vitro using extracts from Xenopus eggs. Nuclear-specific vesicles bound to demembranated sperm chromatin but did not fuse in the absence of cytosol. Addition of cytosol stimulated vesicle fusion, pore complex assembly, and eventual nuclear envelope growth. Vesicle binding and fusion were assayed by light and electron microscopy. Addition of ATP and GTP to bound vesicles caused limited vesicle fusion, but enclosure of the chromatin was not observed. This result suggested that nondialyzable soluble components were required for nuclear vesicle fusion. GTP gamma S and guanylyl imidodiphosphate significantly inhibited vesicle fusion but had no effect on vesicle binding to chromatin. Preincubation of membranes with 1 mM GTP gamma S or GTP did not impair vesicle binding or fusion when assayed with fresh cytosol. However, preincubation of membranes with GTP gamma S plus cytosol caused irreversible inhibition of fusion. The soluble factor mediating the inhibition by GTP gamma S, which we named GTP-dependent soluble factor (GSF), was titratable and was depleted from cytosol by incubation with excess membranes plus GTP gamma S, suggesting a stoichiometric interaction between GSF and a membrane component in the presence of GTP gamma S. In preliminary experiments, cytosol depleted of GSF remained active for fusion of chromatin-bound vesicles, suggesting that GSF may not be required for the fusion reaction itself. We propose that GTP hydrolysis is required at a step before the fusion of nuclear vesicles.
منابع مشابه
Roles of Ran–GTP and Ran–GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system
The molecular mechanism of nuclear envelope (NE) assembly is poorly understood, but in a cell-free system made from Xenopus eggs NE assembly is controlled by the small GTPase Ran [1,2]. In this system, Sepharose beads coated with Ran induce the formation of functional NEs in the absence of chromatin [1]. Both generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 and GTP hydrolysi...
متن کاملAssembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA
A key event in nuclear formation is the assembly of functional nuclear pores. We have used a nuclear reconstitution system derived from Xenopus eggs to examine the process of nuclear pore assembly in vitro. With this system, we have identified three reagents which interfere with nuclear pore assembly, NEM, GTP gamma S, and the Ca++ chelator, BAPTA. These reagents have allowed us to determine th...
متن کاملRole for phosphatidylinositol in nuclear envelope formation.
PtdIns is a minor membrane phospholipid that is important in signal transduction. Recently, derivatives of PtdIns phosphorylated at the 3-position of the inositol ring have been implicated in the regulation of constitutive membrane traffic and in membrane fusion events. Assembly of the nuclear envelope (NE), a crucial step in the progress of mitosis, is also likely to involve membrane fusion re...
متن کاملCharacterization of the membrane binding and fusion events during nuclear envelope assembly using purified components
At the end of mitosis membrane vesicles are targeted to the surface of chromatin and fuse to form a continuous nuclear envelope. To investigate the molecular mechanisms underlying these steps in nuclear envelope assembly, we have developed a defined cell-free system in which the binding and fusion steps in nuclear envelope assembly can be examined separately. We have found that extensively boil...
متن کاملSpatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides
Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 116 شماره
صفحات -
تاریخ انتشار 1992